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Abstract 

Since the invention of computer, people have been utilising its fast computation ability, and 

nowadays, computer is far better than human in many routine tasks. However, there are the 

fields, such as computer chess, in which computer is not superior. Best human chess players 

still rival best computer chess programs successfully. This might happen due to the fact that 

chess includes something beyond pure calculations, which is beyond the capabilities of a 

computer, but what is quite normal for human. As an alternative, this might happen because 

of inaccuracy how computers estimate the goodness of a given chess position. In this thesis, 

an effort on the second assumption is made by means of using the advantages of genetic 

algorithms, which are very well known as an excellent tool for solving optimisation 

problems. 

 

In this thesis, the main components of a computer chess program are first reviewed. These 

include the well-known tree search and alpha-beta pruning. Concepts such as quiescence 

search, null move, and table bases are also discussed. Basic introduction to genetic algorithms 

is given. An own evaluation function of a chess position is constructed. A genetic algorithm 

is used for optimising the values of the parameters. The system is implemented and tested 

using an own chess engine, and the results are presented. 



 
 
 
 

i 

1 INTRODUCTION .................................................................................................................1 

1.1 THE GAME OF CHESS ..................................................................................................1 
1.1.1 INVENTION...............................................................................................................1 
1.1.2 BASIC CONCEPTS......................................................................................................2 
1.1.3 MOVING RULES ........................................................................................................3 
1.1.4 GAME RECORDING ....................................................................................................4 
1.2 THE GAME OF CHESS AND ARTIFICIAL INTELLIGENCE................................................6 
1.3 PURPOSE OF THIS RESEARCH ......................................................................................7 

2 COMPUTER CHESS............................................................................................................8 

2.1 HISTORY OF COMPUTER CHESS...................................................................................8 
2.2 MAKING A CHESS PLAYING COMPUTER PROGRAM ......................................................9 
2.2.1 CHESS BOARD......................................................................................................... 10 
2.2.2 MOVE SEARCH........................................................................................................ 12 
2.2.3 FULL-SEARCH......................................................................................................... 13 
2.2.4 ALPHA-BETA (? -? ) PRUNING................................................................................... 14 
2.2.5 TRANSPOSITION TABLES ......................................................................................... 17 
2.2.6 MOVE ORDERING AND KILLER MOVE HEURISTIC ....................................................... 19 
2.2.7 HISTORY TABLE ..................................................................................................... 21 
2.2.8 ITERATIVE DEEPENING............................................................................................ 22 
2.2.9 QUIESCENCE SEARCH.............................................................................................. 22 
2.2.10 NULL MOVE ........................................................................................................... 23 
2.2.11 OPENING AND END GAME DATABASES...................................................................... 24 

3 EVALUATION FUNCTION ...............................................................................................26 

3.1 SUMMARY OF PARAMETER SELECTION .....................................................................27 
3.2 MATERIAL COUNT ....................................................................................................28 
3.3 POSITIONAL FACTORS...............................................................................................29 

4 GENETIC ALGORITHMS.................................................................................................35 

4.1 OVERVIEW ...............................................................................................................35 
4.2 TERMINOLOGY.........................................................................................................35 
4.3 POPULATION ............................................................................................................36 
4.4 GENETIC OPERATORS ...............................................................................................37 
4.5 EVALUATION AND SELECTION...................................................................................38 

5 PROPOSED GENETIC SYSTEM.......................................................................................39 

5.1 SOLUTION REPRESENTATION ....................................................................................39 
5.2 INDIVIDUAL ..............................................................................................................41 
5.3 OPERATORS ..............................................................................................................42 
5.3.1 CROSSOVER ........................................................................................................... 42 
5.3.2 MUTATION ............................................................................................................. 45 
5.4 EVALUATION AND SELECTION...................................................................................47 

6 EXPERIMENTS AND RESULTS.......................................................................................52 

6.1 SOME PRELIMINARY CALCULATIONS ........................................................................52 
6.2 GENERAL PLAYING STYLE AND ITS PROBLEMS ..........................................................52 



 
 
 
 

ii 

6.3 THE RESULTS............................................................................................................55 

7 CONCLUSIONS..................................................................................................................60 

REFERENCES.........................................................................................................................61 

APPENDICES..........................................................................................................................66

 



 
 
 
 

1 

1 INTRODUCTION 

1.1 The game of chess 

1.1.1 Invention 

There is a wide-spread legend that narrates about the invention of the game of chess. I retell it 

here how I heard it during the school lesson on mathematics when we were introduced the 

exponential operation. Approximately at the same time I started to make my first steps in 

playing chess.  

In ancient times one Indian sage came to the rajah and showed a game he invented. The rajah 

liked the game so much that he wanted to award the sage and said that the sage could ask 

whatever he wanted for the invention of such an interesting game. The sage asked to put 1 

grain of wheat onto the first square of a game board, 2 grains onto the second square, 4 grains 

onto the third, and so on, putting onto every next square twice as many grains as there were 

on the previous one. And this was the quantity of wheat he would like to get. With 

cheerfulness, the rajah agreed to accomplish sage’s wish. Unfortunately, he could not fulfill 

his promise because the number of grains the sage asked for, 264, is much greater than the 

overall number of grains on the whole Earth. 

I think, this legend with one or another variant is known to many people, not only chess 

players. But the real story of the invention of chess, to which a lot of investigations have been 

devoted and a number of different scientifically based conclusions have been reported, is not 

so simple and is still a subject of controversy. 

The first hypothesis assumes that the game came to Europe from India [19, 35, 52]. The 

primary reason is that chess was earliest recorded in a number of Persian and Arabic 

manuscripts, and in them the game was told to be invented in India. The basic work 

supporting this version is [35]. It is a fundamental investigation of about 900 pages created in 

1913, which still remains the most popular reference for those working on the history of 

chess. 

The second hypothesis states for China as being homeland of chess [19, 42]. In [42] there is a 

very detailed discussion about different types of Persian-Arabic-Indian, Japanese, Chinese 
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and modern chess, from which the author concludes the evident similarity of latter two. 

However, Sloan [42] stated that chess did appear first in China and not in India, but he was 

heavily criticised by Ghory [18]. Ghory tried to show by means of commenting the cites 

extracted from [42] that most of the conclusions were unsubstantiated. However, Ghory 

agrees with Sloan in the opinion that there is no solid evidence about Indian origin of chess. 

Moreover, there is more evidence for Chinese, rather than for Indian priority. 

Thus, there is no universal opinion in the scientific world of historians about the origin of 

chess. I have never played either Chinese or Japanese chess. But my opinion is that modern 

chess, which is nowadays so popular and is played in all over the world, is an evolutional 

aggregation, originally born somewhere in the East and being modified on its way to Europe. 

There is a description of modern chess in the following two sections. This information is 

enough to become able to play and understand how to move and the notations used to record 

games. 

1.1.2 Basic concepts 

The modern chess is played on a special square board divided into 64 squares of two different 

colours (usually black and white, but not necessarily) as shown in Fig. 1. 

 

Fig. 1: Initial chess game position. 

This board is called chessboard. Vertical lines are called files and horizontal lines are called 

lines. The words vertical and horizontal are used as well. Straight line that connects adjacent 
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squares of the same colour is called diagonal. There are two opponent sides, which are 

referred to as white and black. In the beginning of the game both sides have an equal set of 16 

pieces. The starting position of the pieces is shown in Fig. 1.  

1.1.3 Moving rules 

White and black, in turn, displace pieces on the chessboard. White starts. Chessboard is put 

so that the leftmost bottom square is black. A single or in several cases a set of displacements 

made by one player is called move. To distinguish, in computer chess one move by one side 

is called ply and was introduced by Samuel in [39] in order to represent one level in the game 

search tree (see section 2.2.2). Each piece has its own name and it moves according to a 

particular rule. The pieces and their moving rules are described next. 

Above all, piece cannot move to a square occupied by a piece of the same colour. If a piece 

of one colour moves to a square occupied by a piece of the other colour, the latter is 

considered to be captured and is removed from the chessboard within the same move. A 

piece is said to attack the square, if it can move to or perform a capture on this square. 

Pawn. Pawn moves (but not attacks) one square ahead on the same vertical, if 

this square is empty. In the initial position, pawn can move two squares ahead 

(but not attacks), if both squares are empty. Pawn can move one square ahead diagonally, and 

this is the square it attacks, if this square is occupied by opponent’s piece. If  pawn moves 

from its initial position to two squares so that it passes through the square attacked by 

opponent’s pawn, then it can (but not obliged to!) be captured by the corresponding 

opponent’s pawn in immediate reply as if it moved only one square. This type of capture is 

called en passant capture. An example of en passant capture move is shown in Fig. 2 in 

section 1.1.4. If pawn reaches the last (of its initial position) horizontal, it must be replaced 

either with knight, bishop, rook, or queen of the same colour. This move is called promotion. 

Knight (N). Knight can move to one of the nearest squares of its current position, 

which are not on the same horizontal, vertical, or diagonal. Knight does not affect 

the squares it passes through. 

Bishop (B). Bishop can move any number of squares along the diagonal(s). 
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Rook (R). Rook can move any number of squares along the horizontal or vertical. 

 

Queen (Q). Queen can move any number of squares along the horizontal, 

vertical, or diagonal(s), on which it stays at the moment. 

Bishop, rook and queen cannot pass through the square occupied by a piece of either colour. 

King (K). King can move in two different ways. It can move to any square 

adjacent to its current location, if the destination square is not attacked by a piece 

of different colour. King can also castle. Castling is performed by displacing king along the 

edge horizontal from its initial position to two squares towards one of the rooks of the same 

colour, and the corresponding rook is then placed to the square king has just passed through. 

This manipulation is considered to be one king’s move. Castling becomes impossible once 

king has moved, or if the corresponding rook was moved. Castling becomes temporarily 

impossible if the square, on which king stays at the moment, which king must pass through, 

or which king must occupy, is attacked by one or more pieces of different colour. Castling 

also becomes temporarily impossible if there is a piece between king and the corresponding 

rook, with which king is to castle. 

King is said to be in check if its current location is attacked by one or more pieces of different 

colour. Player cannot make move that keeps his king in check. If player does not have a move 

that will preserve a capture of his king during the next opponent’s move, the king has been 

checkmated, and the player loses the game. If player does not have a valid move and his king 

is not in check, this means that his king has been stalemated, and the game is drawn. The 

game is also considered to be drawn, if none of the players is able to checkmate opponent’s 

king. 

1.1.4 Game recording 

Every square on the chessboard has a unique address that consists of two symbols. The first 

symbol stands for the vertical the square belongs to and it is a Latin letter from a to h. The 

second symbol stands for the horizontal the square belongs to and it is a number from 1 to 8. 

For example, from white’s point of view left bottom square has the address of a1, because it 

belongs to the first vertical and the first horizontal. Right bottom square has the address of h1, 

because it belongs to the last vertical and the first horizontal. The square, which belongs to 
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the fourth vertical and the fifth horizontal, has the address of d5. The entire picture is shown 

in Fig. 1. 

Every official chess game, i.e. one that occurs in an official competition of any level, is 

recorded. It allows chess players to analyse chess games and try to find better moves, which, 

in case of success, is announced publicly. It is done in order to continually improve the 

quality of playing, and this is the reason why there exist chess databases. This issue will be 

discussed more in section 2.2.11. 

Since only one piece can occupy one square in a certain position, and vice versa, the 

universal way to record a chess move is to write down address of the departure square 

followed by address of the destination square. Simply, a game can begin with the following 

move sequence: b1c3, e7e5, e2e4, b8c6.  

 
Fig. 2: En passant capture move. Position after 1. d4 Nf6 2. d5 c5. Black pawn has just moved from c7 to c5, 
white pawn on d5 can capture it en passant, 3. dxc6, just like if it moved to c6. 

But for better readability and faster understanding, some simplifications were involved into 

the recording process. Instead of indicating the departure square, a letter for the moving piece 

is written. These letters were given in section 1.1.3 in brackets after the names of the pieces. 

The only exception is on pawn, for which no letter is used. Usually, moves in the game are 

also numbered. Thus, the above sequence usually looks like 1. Nc3  e5  2. e4  Nc6. In some 

positions, several (usually, two) pieces of the same kind are able to move to the same square. 

In this case, a qualifying symbol is added after piece’s letter. For example, Nbd2, N7e5, 
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Rad1, R7g8, Rff8. Castling with h rook is written as 0-0, and castling with a rook is written as 

0-0-0. 

If move is a capture move, symbol x is appended right before the destination square address 

(exd4). If move produces a check, symbol + is appended to the end of this move (Nbxd8+). If 

move checkmates a king, symbol X is appended to the end of this move (Qxg7X). 

1.2 The game of chess and Artificial Intelligence 

If asked, most people now would answer that at least once they have heard the phrase 

Artificial Intelligence, or its abbreviature, AI. A part of them would say that it concerns 

mostly computers. Only a few people would be ready to tell properly what AI is, the 

problems it solves, the methods that are used, and other related issues. I do not belong to the 

group of experts in the area of AI, and present work is not a research in that field. 

Nevertheless, I decided to start this thesis exactly with referring to the notion of Artificial 

Intelligence, and there are some reasons below. 

During the whole period of existence of computers, the human being has been studying the 

main question of Artificial Intelligence: “Can a machine think?” In spite of the range of the 

problems considered to be the problems of AI is quite comprehensive, one of its most 

interesting and valuable sub-branches is the problem of search very well known from the 

strategic game playing. In checkers, chess, othello, go and other strategy games (sometimes 

called games of perfect information [30]) the search has to be done before a move is made. 

For those who are familiar at least with one of these games, it is obvious that there is no 

possibility to check every position that may become a possible continuation at some 

intermediate stage of a certain game, since the number of positions grows exponentially with 

every move made. For example, in chess, there are 400 for the first, 8902 for the second, 

197281 different variants for the third full move. Therefore, it is understood that human uses 

some different method from complete search to find a good move (according to the rules of 

the game). Which exactly?  

One of the possible answers is that it is a property of intelligence. Can a machine simulate the 

human’s thinking process? This is still an open question, and the solution, if any, is vague. 

Nevertheless, nowadays there are computer programs that are highly competitive against the 

strongest human players. These world famous programs are Deep Blue, Deep Junior, Deep 
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Fritz, REBEL, Mephisto. Chapter 2 and the beginning of Chapter 3 of the present work 

discuss the basics of the methods, which make these programs play so strong. 

1.3 Purpose of this research 

The most important thing for a chess playing computer program is the way, in which the 

moves are evaluated. Since the computer is nothing but a device that is able to operate with 

numbers, then from the computer point of view every chess position is nothing but a 

combination of numbers. Therefore, ideally, there must exist a numerical equivalent for every 

positional component. The question of constructing such conformity is not trivial at all, and 

there are, in my opinion, two main reasons for it. First of all, every chess position is highly 

individual, and some observations that are valuable for one position can be completely 

senseless for another. Secondly, in general, there can not be any limits set for the number of 

parameters, which are to be taken into account when analysing the position, since this kind of 

things depend on the goals every different player sets for himself in a certain position. And 

finally, this numerical analogy, i.e. set of numbers, must be exactly such that every number, 

is the precise value of a positional component it stands for. Obviously, human uses more 

complicated technique for playing chess, but he does not deal with numbers. All said above 

makes the creation of a perfect computer chess player worlds apart from being completed, but 

only with all this the best numerical evaluation can be obtained.  

And coming back to the topic: in other words, these numbers must be optimised. And genetic 

algorithms are known to be of a very successful use in the area of optimisation problems, i.e. 

the problems where the best of all possible solutions is desired, and they, with one or another 

peculiarity, have already been applied to the problem of computer chess [7, 45]. This thesis is 

one more effort in this area. 
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2 COMPUTER CHESS 

2.1 History of computer chess 

The time period of 1949 and 1950 is considered to be the birth of computer chess. In 1949, 

Claude Shannon, an American mathematician, wrote an article titled ”Programming a 

Computer for Playing Chess” [40]. The article contained the basic principles of programming 

a computer for playing chess. It described two possible search strategies for a move with 

taking into account the impossibility of considering all the colossal number of variants. These 

strategies will be described in section 2.2 when directly talking about implementing chess as 

a computer program. No fundamentally different strategy has been invented ever since, which 

would appear to be successful enough in comparison of those two. 

About a year later, in 1950, an English mathematician Alan Turing [46] (published in 1953) 

invented an algorithm aimed at teaching a machine to play chess. Unfortunately, at that time 

there was no machine, which could be programmed with that algorithm. Therefore Turing 

performed algorithm’s work himself using pen and paper and played against one of his 

colleagues. The program lost, but the start was given for computer chess. 

In the same year in USA, John von Neumann created a calculating machine huge in its size 

and very powerful to that time. The machine was built in order to hasten calculations on the 

production of atomic weapon but before the giant was used for its direct purposes, a test had 

been made and the chess-playing algorithm for a simplified variant of the game (6x6 board 

without bishops, no castling, no two-square move of a pawn, and some other restrictions) had 

been programmed into it. The machine played three games: it beat itself with white, lost to a 

strong player, and beat a young girl who had been taught how to play chess a week before 

[16]. 

In 1958, a great research in the area was made by a group of American scientists from 

Carnegie-Mellon University in Pittsburgh. Their algorithm, called alpha-beta algorithm, or 

alpha-beta pruning, the modern version of which is considered in details in section 2.2.4, 

allowed pruning away a considerable number of moves without having any penalties in the 

further process. Undoubtedly, it was a great discovery and made computers able to calculate 
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about 5 times more positions, but it still was not enough. The main problem again was how to 

reduce the number of required calculations. 

The next interesting idea to improve computer’s game level was proposed by another 

American scientist Ken Thompson. He reorganised the structure of an ordinary computer and 

built up a special device named Belle [8], whose only purpose was to play chess. That 

machine appeared to be much stronger than any existing computer and held the leading 

position among all chess playing computers for a long period in the 1980’s, until there 

appeared HiTech, a chess computer deve loped by Hans Berliner from Carnegie-Mellon 

University, and Cray X-MPs [16].  

Since then the progress in computer chess was mainly the result of permanently increasing 

computers’ computing power. At the end of 1980’s, an independent group of students made 

their own chess computer Deep Thought that appeared to be the prototype of the following 

Deep Blue, which later won the match against the human world chess champion Garry 

Kasparov in 1997 [27]. 

2.2 Making a chess playing computer program 

The whole computer chess game involves a number of parameters for different purpose into 

the action process at every step. The chess board, the pieces on the board, moving rules, 

castling possibilities, en passant capture possibilities, and king in check. All these and some 

others must be considered and handled correctly when implementing a chess playing 

computer program. In this chapter I am going to give a more or less detailed description of 

every part that is required to construct a chess playing program. 

Every chess engine consists of three components. First of all, a program has to have a 

computer equivalent of a real chessboard, so that it is able to understand what is going on in 

the game. Next, there must exist a method that decides if a position under consideration is 

worth playing or an attempt to find better one must be made. This method is referred to as 

search technique, and it is still a question of great discussion in the world of computer chess. 

And finally, a function, on which the search technique is based, and that tells, which of two 

positions is better than another, must be invented. This is called the evaluation function, and 

its description is given in a separate chapter (see Chapter 3). 
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2.2.1 Chess board 

Chessboard representation is a significant part of every chess program, independently of 

which search technique is chosen and how complicated evaluation function is developed. All 

the processes, which occur in the game, operate with the chessboard, so that it is always 

worth spending time to think over chess board’s the most convenient mode. Two reasonable 

approaches have been given in [15] to represent a chessboard in computer, the mailbox and 

the bit boards structures. 

The mailbox representation was the original one sketched out by Shannon in [40]. In his time 

the power of the mightiest computers was totally insignificant to the one that a usual 

generally-purposed personal computer has nowadays, as well as there were no this plenty 

amount of computer memory to operate with. Therefore the programmers always aimed at 

reducing the capacity of memory required by the program, sometimes at the cost of 

increasing its calculation time. According to Shannon, chessboard itself consists of 64 integer 

numbers each from -6 to 6 (-6 for black king, -5 for black queen, 0 for empty square, 5 for 

white queen, and 6 for white king). One more number indicates the moving side, he used +1 

and -1 for white and black, respectively. However, Shannon noted that the proposed method 

was not the most efficient one, but it was convenient for calculations. A move is described by 

specifying three parameters: index of the departure square, index of the destination square, 

and one more number considered in the case of pawn promotion move stores the value of a 

piece, to which a pawn promotes. The program then assigns the value of the departure square 

to the value of the destination square (or the value of the third parameter in the case of 

promotion) and then 0 to the departure square. This is obviously a convenient and efficient 

way of describing a move, and a similar (if not the same) idea is used in most computer 

implementations of the game of chess, or any other, which has the same playing manner.  

Using these notations, there might arise some difficulties in detecting the edges of the board 

when determining legally possible moves for a certain piece. This circumstance must be 

handled somehow, and therefore an improvement of the Shannon’s method was invented for 

this purpose.  

Instead of using 8x8 board a 10x12 board is considered [15]. Squares that belong to 

chessboard are assigned addresses in the way shown in Fig. 3. The squares of all other 
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addresses serve as the auxiliary squares. They contain some big value to indicate that the 

square is off the playing board. 

 

Fig. 3: Mailbox representation of the chessboard. 

Thus if a square, to which a piece is thought to move, is occupied by this number, it means 

that the square in question is out of the board and it is impossible to move there. 

After a time, another approach, called bit boards, was invented independently by two groups 

of scientists: one from the Institute of Theoretical and Experimental Physics1 in Moscow, 

USSR, and one from Carnegie-Mellon University, Pittsburgh, USA, led by Hans Berliner. 

They suggested to represent each square of the chess board by a single bit, thus having one 

64-bit computer word (and this is the one that is called the bit board) to represent any state of 

the board. The whole chess board consists then of 12 such words: for every chess piece, the 

corresponding word contains 1 on that bit, which number within the word corresponds to a 

square of the chess board that piece occupies. All other bits are set to 0. Two more bit boards 

that contain all white pieces and all black pieces present on the board, respectively, are 

usually used. The bit boards containing the squares, to which a certain piece on a certain 

square is allowed to move, can be easily constructed also. There is no reason to enumerate 

any further, since these are the developers, who decide what of the game they want to be 

represented with the help of bit boards. Of course, en passant and castling possibilities must 

also be kept in separate variables. 

                                                 
1 Later they continued their work in the Institute of the Problems of Control, also in Moscow. 
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The presented approach is much faster and more convenient with respect to obtaining the 

necessary interesting information. For instance, it greatly simplifies move finding procedure: 

all the program has to do is to perform logical AND operation on the bit board of all possible 

moves of a piece on the square and the negation of “all-this-colour-pieces” bit board. For 

some other more complicated examples a reader is referred to [15], as well as for comparing 

the performance of the same operations using two discussed approaches. 

2.2.2 Move search 

Moves in a chess game are done in turn by two players until some final result – victory/loss, 

or draw – is reached. Therefore the game of chess can be represented as an enormously huge, 

but yet finite, tree with all possible chess positions as its nodes and final positions, from 

which no continuation is possible (checkmate or stalemate) or all continuations are 

meaningless, as its leaves.  

Therefore it is possible to scan the tree and find the path leading to a victory from any given 

position. For example, for a standard game of Tic-Tac-Toe (using the 3x3 board), the overall 

number of final positions is less than 9! = 362880, it takes less than one second for a modern 

computer to find the best path. For the game of chess, meaning the reasonability of 

computations required, the problem is that, in general, a chess position allows about 30-35 

moves as the replies to the move leading to this position. Thus, having about 60 (and this is 

quite low bound) moves per one game, i.e. 120 plies, we get 30120 ≈ 1,8 ⋅ 10177 leaves. This is 

more than the square of the assumed number of atoms in the Universe.  

Of course, you may fairly mention that only a few moves are really valuable in any position. 

Moreover, all others lead to an immediate loss. For example, the sequence “queen takes 

pawn, pawn takes queen” makes sense only when the sacrifying side is going to mate or it 

will for sure take the opponent’s queen en prise later. Otherwise the game will be lost. The 

number of valuable moves varies for different positions, but on average there are not more 

than 4 or 5 such moves. It does not solve the problem, since the number 5120 ≈ 7,5 ⋅ 1083 is 

still inadmissible, but this question, i.e. selecting only several moves for consideration and 

ignoring the rest, was described already by Shannon in [40]. It was named as type-B strategy, 

whereas the other way, in which no move is omitted, was called type-A strategy. But since 

human players, without doubt, use type-B strategy, then it is a matter of perception rather 

than of anything else, and, hence, it is, in general, inapplicable to a computer. And the history 
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only proved that fact: most computer chess programs eventually overlooked the losing move, 

which seemed to be unlikely to happen, according to the algorithms they had. Therefore the 

question of creating a plausible move generator that will never fail in its choice is far from 

being solved [15]. 

2.2.3 Full-search 

Due to all said above, a given position could be searched for some reasonable number of plies 

using the so-called minimax technique, which is very popular among the most effective 

computer implementations of the games of perfect information. After every next ply has been 

made, the algorithm rescans the game tree to the same depth, but starting at a level lower (in 

other words, going one level deeper), and thus obtaining acceptable results each time.  

The word “minimax” already expresses the idea of minimal maximum and maximal 

minimum. The maximal value for one side is the minimal, or least desirable, for the other, 

and at every step a corresponding selection must be made, depending on the side, which is on 

move. It means that two types of best values, the minimal and the maximal ones, are always 

considered. The best move is the one that leads to the position with the best score for the side 

to move. In order to get the clear understanding, let’s consider an example of such a process 

of choosing minima and maxima. 

Assume that we have an initial position with white to move, and the depth, to which the 

search is performed, is 4 plies (2 full moves). Assume also that the evaluation function 

returns white’s score and it is symmetrical, i.e. white’s score is equal to black’s score, but 

with the opposite sign. This situation is shown in Fig. 4. Here, grey squares are the nodes, in 

which minimum is chosen, and white squares are the nodes, in which maximum is chosen. 

Positions are evaluated using the evaluation function I developed for my program. Arrows 

along the lines indicate the corresponding choices. 

The last move is made by black. It means that end positions must be considered from black’s 

point of view, and the best move is, hence, the one that provides the lowest score, or simply 

the minimum. At a higher level all the numbers, which were lifted up, must be again 

compared within one node, and the greatest one must be selected, since white’s purpose is to 

achieve the position with the highest score. This procedure of alternation is repeated until the 

root of the search tree has been reached, where the maximal value is finally picked and the 

appropriate move is made.  
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Surely, the actual game path may likely differ from the one obtained for the current position, 

but this is because different part of the tree with new leaves will be examined at every new 

step and different results will be achieved. 

 

Fig. 4: Example of a game tree. 

The minimax procedure can be implemented by a recursive function that searches the tree. 

Fig. 5 shows its sketch in a C-like pseudo-programming language [29]. 

int Minimax(position p) 
{ 
 int m,i,t,d;  
 Descendants(p,d); //Define all descendant positions p1,...,pd  
 if d = 0  
  return EvaluatePosition(p);  
 else  
 {  
  m = - infinity;  
  for i = 1 to d  
  { 
   t = -Minimax(pi);  
   if t > m  
    m = t;  
  } 
 } 
return m; 
} 

Fig. 5: Minimax algorithm. 

2.2.4 Alpha-Beta (a-ß) pruning 

Let’s again consider the example in Fig. 4 and the depth-first method of observing the tree, 

which is usually used in modern computer chess programs [32]. Assume that we have already 

searched the tree to leaf 8 with position score -15. If you now look at node 3, its score is -6, 
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i.e. if white chooses the path to node 3, the worst score it may get is -6. And if it plays to 

node 7, it gets -15 already after the first reply considered during the search. It simply means 

that there is no reason to consider all other replies to node 7, which have not been considered 

by the moment, since white will in any case choose the path leading to node 3. In other 

words, we can simply skip considering leaf 9. Using this line of reasoning, we can skip also 

leaves 12 and 13. The same procedure, but only using the opposite reasoning, is applied at a 

level above. To be precise, there is no reason to consider nodes 17 and 19 (and, hence, all of 

their children), since black will always choose the path leading to node 2. And finally, all the 

sub-tree of node 26 can be skipped, since white will play to node 1, which gets the final score 

-6, rather than to node 21, which already has the score -7, and the search is not complete yet.  

The method described above is called α-β  algorithm, or α-β  pruning, and according to [32], 

was first presented in [36]. Later, in [29], the topic was reviewed and supplemented with the 

proof of correctness and time complexity evaluation.  

int  AB_Search(position p, int a, int b) 
{ 
 int m,i,t,d;  
 Descendants(p,d); //Define all descendant positions p1,...,pd  
 
 if d = 0  
  return EvaluatePosition(p);  
 else  
 {  
  m = a;  
  for i = 1 to d  
  { 
   t = -AB_Search(pi, -b, -m); 
   if t > m  
    m = t;  
   if m >= b 
    break; 
  }  
 }  
 return m; 
}  

Fig. 6: α-β algorithm. 

Every situation when there is no need to examine the rest of the sub-tree is called cut-off. 

Values α and β  are, respectively, white’s and black’s best move scores found so far. The 

main advantage of this method is that the result is the same as if there were no cutting at all 

and the whole tree were examined. The sketch of this algorithm [29] is given in Fig. 6. 
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Table 1 shows the results of running the program I have created to play against itself using 

two above methods of move finding. Value in MOVE NUMBER column is the ordinal 

number of move, for which the search is made, since the beginning of the game (1 is the first 

move of white, 2 is the first move of black, 3 is the second move of white, and 16 is the 8th 

move of black, respectively). The numbers in other cells stand for the average time (in 

seconds) the program spent to find every next move in the test game.  

Table 1: Full search and α-β search. 

2 PLIES (sec) 3 PLIES (sec) 4 PLIES (sec) MOVE 
NUMBER FULL 

SEARCH α-β SEARCH FULL 
SEARCH α-β SEARCH FULL 

SEARCH α-β SEARCH 

1 0,61 0,38 7,8 3,7 177,0 45,5 

2-6 15,0 348,0 

7-11 22,2 490,0 

12-16 

1,31 0,95 

31,6 

7,35 

900,0 

80,2 

 

In fact, time was different for each ply. For example, checks were recognised immediately 

and almost no time at all was spent in reply. But for the ordinary moves the difference was 

insignificant in all of α-β  cases, and the separation between the moves (see the first column) 

was made in order to mark out the great distinction of the full search. In addition, the first ply 

was separated from the rest in each case, since its values were striking in comparison to all 

others.  

Visual comparison of both search methods, in terms of the total number of positions 

evaluated, applied on the same game and using my own evaluation function is given in Fig. 7. 

To make the first move, the full search evaluated 8938 leaf positions, whereas the α-β  search 

evaluated 4245, or 47% of the full search work. After the 8th move, the numbers were 136813 

and 29577 (21%), respectively. And after the program had found the 16th move, the overall 

number of positions evaluated in the game was 377367 for the full search and only 63515 

(17%) for the α-β  search. Of course, the more the search depth is, the more positions are 

skipped by the α-β search (when searching to 4 plies, α-β  considered only 0,07% of the 

positions the full search evaluated after 16 moves). 
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Fig. 7: Full search and α-β search to 3 plies for the same game. 

The α-β algorithm can be applied to different search problems, not only computer chess. But 

each game has its own features, which might not be peculiar to any other at all. Due to this 

fact, the following discussion deals only with the game of chess. However, it does not mean 

that the refinements, which are going to be introduced, are not applicable to other games. On 

the contrary, it is very likely that being revised and modified appropriately they are. The only 

thing is that these peculiarities must be carefully determined and analysed in every case. 

2.2.5 Transposition Tables 

There are many ways to reach one position in chess. For instance, four sequences 1. e4 e5 2. 

Nf3 Nc6, 1. Nf3 Nc6 2. e4 e5, 1. e4 Nc6 2. Nf3 e5, and 1. Nf3 e5 2. e4 Nc6 all result in the 

same position. 1. e4 e5 and 1. e4 e5 2. Nf3 Nc6 3. Ng1 Nb8 also both lead to the same 

position, but in different number of moves. Therefore it seems natural to prevent a program 

from considering the same position two or more times. This prevention is especially 

important when a position considered before appeared somewhere in the middle of the 

search. To make it clear, consider two positions: a) 1. e4 e5, b) 1. e4 e5 2. Nf3 Nc6. Consider 

also a 4-ply search technique. Assume now that position b) is now being searched and the 

sequence 3. Ng1 Nb8 has been just examined, so that there are still two plies to go. The 

appeared position is exactly the same as position a). But the latter one has been already 

searched earlier to 4 plies. Therefore spending time on further calculations for position b) will 
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get only 2 plies search score whereas using the results of the past search of position a) 

provides 4-ply search score, which is obviously better.  

Moreover, every chess position is unique. Two positions with the same pieces on the same 

squares but with different en passant status or castling possibility are different. So, positions 

that have been already searched by the algorithm can be stored in some repository containing 

information like the side to move, the score it got, the depth at which this score was obtained. 

This repository is looked through first each time new position is to be examined. The 

repository is called transposition table and it is usually implemented as a hash dictionary [23, 

30].  

From here the question of assigning a unique value to a position arises. One of the solutions 

(the most famous and widely used one) was suggested by Zobrist in [50]. I have not managed 

to find neither the original article nor its later reprint, but the method Zobrist proposed 

became so popular that nowadays it is possible to find Zobrist method’s description in a 

number of Internet resources devoted to computer chess [30, 32]. Zobrist suggested to assign 

one 32- or 64-bit random number to each piece on each square, or 12 ⋅ 64 = 768 numbers 

altogether. Empty square is assigned 0. A set of numbers is also generated for different 

castling possibilities and for en passant capture status. Then, starting with null hash key, 

XOR operation is performed between current hash key and a random number generated for 

the piece on the square in question if this piece is met on this square. The procedure is 

repeated for every square of the board. The value is then XORed with random numbers of 

castling and en passant possibilities. And finally, if black is to move, the number is XORed 

with a random number. The resulting number is a hash key for the current position. 

Of course, the overall number of positions is much larger than the maximal 64-bit number. 

The probability of two positions to have the same hash key is small but greater than zero. 

Therefore, it is possible to repeat the whole procedure described above with different random 

numbers, thus, obtaining the second hash key for the position. The probability of two 

positions to have both hash keys equal is low enough to provide uniqueness of the positions 

within a single game.  

The way of filling the transposition table in general is not confined by any rules. The reason 

is that this is the author of a chess engine who decides what is the most convenient dynamics 

of the content the tables are filled with. Of course, there are many more possible hash keys 
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than the maximal size of a transposition table could be because of the limits of computer 

memory available. Therefore, the hash keys must be somehow mapped onto the table indices. 

The method proposed in [30] and the one that I used in my program simply obtains the index 

as a residue of division of the current hash key by the size of the transposition table. Hence, 

in every game there will be a number of positions that will point to the same entry. And to 

handle this, there should exist a measure of the age of the position so that the engine knows if 

a certain position is old enough to be replaced with the new one. However, this question (to 

create an effective measure) is not simple. In my program a position was replaced with the 

new one each time they both point to the same entry and when all other parameters, which 

described the position in terms of a transposition table entry, allowed to do this. 

The use of transposition tables allows a program to avoid considerable amount of 

unnecessary calculations. Obviously, the more entries the transposition table has, the higher 

the probability of a position to be found in it. The table becomes progressively filled, and it is 

more likely to find more positions in it with every move made, even using such a simple and 

ineffective method of renewing the table like mine. In my program I used the transposition 

table of 220 = 1048576 entries, and according to my experiments, it increased the speed of 

finding a move by one third, on average (see Table 2). 

2.2.6 Move ordering and killer move heuristic 

Coming back to α-β  pruning, it is very important to have the moves ordered in such a way 

that there are as many cut-offs during the search as possible. Evidently, the best ordering is 

when the best moves are searched first. This problem is considered to be among the most 

important ones in the area of α-β  search in computer chess.  

Generally speaking, it is impossible to know in advance, which move proves to be the best 

one in every particular case, for otherwise there would be no need to search at all. Therefore, 

all we can do is to try to use the prior results combined with the information about the current 

situation on the chess board in order to make up a sequence of moves, which will be likely to 

stay in the best order. To start with, all capture moves are worth considering first. For 

replying with a simple pawn or piece moving to a move that took either knight, bishop, rook, 

or queen is unlikely a good choice. We do not talk about special cases, such as when reply 

makes a check with a “fork” to opponent’s queen or starts a mating attack. These situations 

are much rarer and are handled in some special way. Pawn promotion can also be considered 
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as a capture move, because it changes the material balance on the board. Later, all checks 

could be considered, and then the rest of moves. This approach, however, uses only 

information at hand and is obtained for every position independently of the game history.  

Another refinement consists in storing for a while the details of the search performed so far. 

For instance, if a reply is so that the queen is taken, it does not really matter if some pawn 

was moved one or two squares (1. … h5 2. Qxa5 or 1. … h6 2. Qxa5 in position in Fig. 8). 

Therefore the reply that took the queen during examining the first pawn move and made a 

cut-off (i.e. the position became absolutely hopeless for black), should be put to the top of 

possible replies during examining the second pawn move. 

 
Fig. 8: Valuable and useless moves. 

This idea was referred to as killer heuristic, and the moves that caused quick cut-offs were 

named killer moves. All this and some additional detailed information on the techniques used 

for move ordering can be found in [23, 30, 32]. 

The results of running my program (in seconds required to calculate every next move) for 

different combinations of transposition tables and move ordering are given in Table 2. Moves 

were ordered in two separate steps. 4 best and 4 worst moves of the previous search were 

always kept for the next search procedure. All new moves, generated during the next search, 

were compared to them and were placed onto the top of the final move list, if a match with 

the best move was found, or onto the bottom if a match with the worst move was found. The 

rest of the moves were first ordered in decreasing order, according to the safety of the 

destination square. The more friendly pieces and the less opponent’s pieces attacked the 
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destination square, the more its safety was. Then the moves were reordered, according to 

their types. Capture and promotion moves were placed above other moves. 

Table 2: Transposition tables and move ordering in α-β search to 4 plies. 

Move number 
 Transposition Table Move Ordering 

1 2-16 

- - 45,5 80,2 

Yes - 32,7 67,4 α-β search 

Yes Yes 23,6 29,2 

 

So, using both transposition table and move ordering techniques improves the speed of play 

considerably. Moreover, the first move of the game is separated since its improvement is 

much less, and better improvement is achieved for the later moves. It seems to be correct 

since the program starts with an empty transposition table.  

2.2.7 History Table 

We have just discussed that looking one move back, we place some moves of the current 

position onto the top of the search list based on the scores they achieved a move ago. History 

table approach suggests to store information about all recently examined moves, not only the 

killer moves [23, 30]. The apparent advantage is that using history table it is possible to 

accumulate information about previous effectiveness of each move throughout the whole 

game tree, unlike it is for killer moves when they are considered only within a certain sub-

tree.  

Here, each time one or another move proved to be good (caused a quick cut-off or achieved 

high position score), its characteristic, which indicates how good this move is, is increased, 

and the greater this characteristic is later, the higher is move’s privilege in the current move 

list. For example, the move that was placed among the best ones a move ago still has high 

probability to be such,  even if a different piece can move so now. Thus, in Fig. 8, after the 

game continued 1. … Qxc3 2. Bxc3, white’s move Bxf6 (instead of Qxf6 a move ago) is still 

dangerous. Of course, all this makes sense only for a reasonable time period, so that the 

history table must be cleaned periodically in order not to mislead the computer with some old 

move. 
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2.2.8 Iterative Deepening 

In any case, it is a factor of time that restricts the quality of playing both by human and 

machine. And if a skilled enough human chess player uses type-B strategy and focuses his 

attention on several but mostly acceptable moves, the machine, as it was already discussed 

above, cannot behave the same way all the time. And due to this the restriction in quality can 

sometimes be suicidal. It is especially important when time limits for one move are only of a 

few seconds. In this case a program can simply fail to consider every move it is supposed to 

by its algorithm. 

Iterative deepening tries to solve this problem. According to this method, a program always 

starts with searching to 1 ply. After the search is complete, the program starts a new search, 

but to 2 plies already. In other words, it starts the search to N+1 plies only after it has finished 

the search to N plies. In case of no time left, it returns the best move of the last complete 

search. As stated in [23], the advantage of this method is that the number of nodes visited by 

all successive iterations taken together is generally much smaller than that of a single non-

iterative search to the full depth in modern chess programs. It happens because of the 

possibility to re-order moves dynamically after every iteration has been completed, thus, 

obtaining better move ordering, so necessary for the effective use of α-β  pruning algorithm. 

2.2.9 Quiescence search 

Let’s now consider the following example. Assume that the search depth is 5 plies and the 

fifth ply is the move with which the side to move takes opponent’s pawn with the rook. As it 

is the last move and no further game path is allowed to be considered, then the evaluation 

function must be called and the score must be returned. The result is that the moving side gets 

the advantage of a pawn, and therefore the move leading to this position will be estimated as 

a favourable one. But the real situation can be so that with his reply the opponent simply 

takes the rook, which, in fact, results in “a-rook-for-a-pawn” disadvantage. This kind of 

behaviour, when a program is not able to see the actual situation, was called horizon effect 

[6]. Of course, after the corresponding game path is chosen, the game will not be played so 

since during the next search the game tree is available at one level deeper and the retake is 

reachable. But what if the chosen move leads to the loss in any case? For example, instead of 

“a-rook-for-a-pawn” there will be “a-piece-for-a-pawn” disadvantage. This situation is for 

sure unfavourable.  



 
 
 
 

23 

A solution is that not every position during the game process is ready for the evaluation. Only 

the relatively quiescent positions, [40], where the least possible action takes place should be 

evaluated (such positions were also called dead in [46]). This is why all capture moves and 

pawn promotions are usually considered separately and searched to the end when the result of 

all material changes finally appears. In addition, moves are ordered in a special way 

depending on the taking piece and the piece to be taken in most valuable victim/least valuable 

aggressor manner. For more details a reader is referred to [23]. Check moves should also be 

taken special care of because check move always allows only a few forced replies and the 

actual situation is also vague. Here, the problem may lie in possibly too long check move 

sequence, which can explode the game tree. This situation can be resolved by limiting the 

number of extra plies given to inspect check moves. In [15] a value of 2 is said to be the 

mostly used one. 

2.2.10 Null Move 

Null move [4, 12, 20] means that the side to move skips its turn and allows the opponent  to do 

two moves in a row. The idea is to see if the opponent is able to change the situation on the 

board playing twice. If the result of applying the null-move procedure is still acceptable for 

the skipping side, there is hardly any need to continue the full search because it most likely 

leads to a cut-off too [23].  

The significance of this technique is in the fact that it takes away the whole ply of the current 

N-plies search tree and makes a machine search one sub-tree of a depth N-1. In the middle of 

the game, when the number of legal moves is about 30-35, using null move takes only 3% of 

the entire N-depth search effort. In case of success, i.e. null move search achieves acceptable 

results, the program saves 97% of the time required to make a move by pure searching, and if 

the results are not good, the program has additionally spent only 3% [30]. 

However, there exist zugzwang (German for "compulsion to move", "forced to move" [55]) 

situations (see Fig.  9), in which null move is the only way to avoid the loss. Applying null 

move procedure to such positions will certainly lead to a mistake.  

In position A of Fig. 9 black do not have a move that will keep the present material balance. 

Namely, any of the moves Ke8, Kf8, Kf7, Kf6, Rb7 allows white to win a pawn on d6. Every 

other possible move (Bc7, Rc7, or Ra7) loses even more material. Situation in position B is 
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not so evident at first glance and requires a bit deeper analysis. I analysed it myself and made 

sure that any black move would led to forthcoming mate or big material losses. 

 

Fig. 9: Zugzwang. Any black move loses. Position A appeared in the game Kosteniuk – Paehtz, Lausanne, 2003 
(taken from [41]). Position B was considered in the analysis of the game Vasiukov – Van Wely, Moscow, 2002 
(taken from [47]). 

Nevertheless there are two observations on this issue: on one hand, it is said in [30] that these 

positions are hopeless anyway; therefore the loss of performance is not very traumatic. On 

the other hand, according to [23], zugzwang happens extremely rarely in chess with the 

notable exception of late endgames. The latter circumstance is usually handled by stopping 

using null move procedure when a number of pieces left in a game is less than some pre-

defined value. So the null move refinement is worth being implemented, especially if the aim 

is to increase search speed. 

2.2.11  Opening and end game databases 

Since it was realised that the best way to memorise the best move for every position is to 

write it down and save, people started to document every game officially played by highly 

skilled players, which was then carefully analysed. It has been done in order to always find 

the best reply for the position appeared in one or another game and to use it whenever the 

position is met again.  
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Nowadays, chess theory, as all this analysis together with the basic principles of playing is 

called, is very huge. There are hundreds of books, each of which is entirely devoted to the 

description of a single opening line. These books discuss in all details the main possibilities 

that can appear when starting the opening in question and bring the ideas and ways of further 

development of the game, which historically proved to show the best performance. I mean 

here that almost for every opening there are only several possible game paths that keep the 

best reply, and all others allow opponent to improve his position. Trying to say this in terms 

of computer chess, allowing the use of database gives a possibility to a computer to make the 

best move irrespectively of how high/low the score calculated by its evaluation function is. 

Moreover, by making a database move, program does not need to search at all!  

The very same idea can be implemented for the endgames, which are also being analysed a 

lot, and in many cases even solved to the end. Every position in the endgame database is 

assigned a value of +∞ (victory), -∞ (loss), or 0 (draw) - the result the position ends with 

when assuming perfect playing of both sides. If during the search a match with the database 

entry is found for some position, this position becomes a leaf of the search tree, and it 

receives the corresponding value from the database without calling the evaluation function. 

According to [23], there are three different kinds of endgame databases available: 

Thompson’s collection of 5-piece databases, Edwards’ tablebases and Nalimov’s tablebases, 

of which the last gained more popularity among recent chess programs due to their 

considerable advantages in indexing and size. Thompson’s databases were the first in the area 

and had a number of disadvantages, especially those of very slow search at deep levels of the 

game tree. It finally made Edwards try a different approach, which became a big success but 

with the only disadvantage of their huge size. Nalimov’s tablebases are actually the 

improvement of Edwards’ originals with advanced index schemes. You can find much more 

information in [23], where there is an entire chapter devoted to endgames databases used by 

the famous chess program Dark Thought. 
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3 EVALUATION FUNCTION 

As we said earlier, there is no possibility to look through the whole chain of subsequent 

moves at some intermediate stage of a single chess game. Therefore the problem of the most 

accurate position fitness estimation arises.  

In general, evaluation function is a multivariable function that measures a goodness of a 

chess position. Every input parameter of this function stands for some factor that 

characterises the position. We have already discussed in the beginning the difficulty in 

constructing a numerical analogy for the game of chess, but at the moment there is no other 

way to make computer play chess. And the more precise this measure is, the better. 

A chess position is a certain set of black and white pieces located on the chessboard. Each 

piece is of different importance and is assigned different value. The difference between the 

pieces of one colour and the pieces of the other colour, or material balance, is the major 

factor in every position evaluation, and it always must be considered above all. Two special 

cases are also used always: position score is +∞ if opponent’s king is checkmated, and -∞ if 

own king is checkmated. Trivial situations, e.g. “king against king”, “king against king and 

knight”, “king against king and bishop”, are known to be drawn, and they can be easily 

included with position score 0 into the evaluation function directly. Using database it is 

possible to assign 0 to more complicated positions that have been analysed before by chess 

experts. 

However, in general, it is not possible to claim the equality of two positions taking into 

account only the equality of pieces of both sides. In several opening lines one side is ready to 

sacrifice a pawn in purpose, e.g. king’s gambit accepted (1. e4 e5 2. f4 exf4), queen’s gambit 

accepted (1. d4 d5 2. c4 dxc4). Here the program that uses opening database must still 

somehow consider itself in an advantageous position, even having one pawn less. Sometimes 

player can sacrifice quality (i.e. exchanging rook for a bishop or knight) and, hence, achieve 

some non-material advantage he considers to be worth the material. Moreover, highly skilled 

chess players often agree to call the game a draw even when there is inequality of pieces. So 

in all these situations other factors, apart from the material balance, should be involved into 

position evaluation. We will call these factors strategic or positional. 
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Ideally, evaluation function is a sum of all factors that influence to the result of the game. We 

need to analyse the board to see, which pieces and other factors are present, and sum up their 

values. Mathematically, evaluation function can be expressed by the formulae: 
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where xi is an indicator of the presence of the i-th parameter, vi is the parameter’s importance 

weight, and N is the overall number of the parameters involved into the evaluation. In the 

following sections we will discuss which parameters may be important. 

3.1 Summary of parameter selection 

Since the top-priority purpose of this work is not to create a high- level chess-playing 

program, but to make an attempt on improving the values of the parameters for position 

scoring, I tried to select the most valuable set of parameters based on my own understanding 

of the game of chess.  It was done by the detailed study of different parameters involved into 

the chess programs I managed to find out [3, 22, 28]. The chosen parameters are shown in 

Table 3. The assigned values were picked also with taking into account my own opinion 

about the importance of the particular parameter. In the next two sections there is a 

description of every selected parameter.  
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Table 3: Selected parameters of the evaluation function and their values. 

# PARAMETER RANGE RECOMMENDED VALUE 

0 queen [800-1000] 900 
1 rook [440-540] 500 

2 bishop [300-370] 340 

3 knight [290-360] 330 

4 pawn [85-115] 100 

    

5 bishop pair (+) [0-40] not given 

6 castling done (+) [0-40] not given 

7 castling missed (-) [0-50] not given 

8 rook on an open file (+) [0-30] not given 

9 rook on a semi-open file (+) [0-30] not given 

10 connected rooks (+) [0-20] not given 

11 rook(s) on the 7th line (+) [0-30] not given 

12 (supported) knight outpost (+) [0-40] not given 

13 (supported) bishop outpost (+) [0-30] not given 

14 knights’ mobility >5 (>6) (+) [0-30] not given 

    

15 adjacent pawn (+) [0-5] not given 

16 passed pawn (+) [0-40] not given 

17 rook-supported passed pawn (+) [0-40] not given 

18 centre (d4,d5,e4,e5) pawn (+) [0-30] not given 

19 doubled pawn (-) [0-30] not given 

20 backward (unsupported) pawn (-) [0-30] not given 

21 blocked d2,d3,e2,e3 pawn (-) [0-15] not given 

22 isolated pawn (-) [0-10] not given 

    

23 bishop on the 1st line (-) [0-20] not given 

24 knight on the 1st line (-) [0-30] not given 

25 far pawn (+) [0-30] not given 

 

3.2 Material count 

Pawn: Pawn is the unit of the measure of material count. It can be set to 1 (pawn), or scaled 

to 100 as it is done here.  

Knight and bishop: Originally, in the pioneer work on computer chess [40], both bishop and 

knight were given the value of 3 pawns. The recommended values are a bit higher and a little 

difference between them proved to be the result of longstanding (and still being continued) 
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experiments in the field of computer chess. Here we set the value of bishop to 340 and knight 

to 330. 

Rook and queen: Usually rook is considered to have value of 5 pawns and queen of 9 

pawns. However, in some applications [3] you can meet higher values, up to 650 for a rook 

and 1200 for a queen. Here we set the value of rook to 500 and queen to 900. 

King: It is the main piece in the game and simply cannot be captured or exchanged. 

Officially, in blitz and fast games there is a possibility to capture the king when the opponent 

misses a check and makes an illegal move. Of course, the game is immediately lost with the 

loss of the king. For example, in the blitz game Shirov-Tkachiev, Bastia, 2003, [53], black, 

having clearly winning position, black simply ignored a check, which allowed Shirov to win 

and move further in the knock-out tournament. But we do not consider such a possibility in 

the present research, since this rule was invented for humans in order not to waste opponent’s 

time when playing with real pieces and real chess boards where illegal moves can be made. 

Besides, computer simply can not make an illegal move, hence, there is no reason of 

assigning any value to king. 

3.3 Positional factors 

The selected important positional factors will be next explained and illustrated in Figures 10, 

11 and 12. 

Castling done and castling missed: Castling is missed, when there is no possibility to castle 

any more. It is very important for a king to be surely defended by friendly pieces in the 

opening and most time in the middle of the game. Pawns in the corner serve as excellent 

defenders, of course, supported by other pieces, if necessary. Castling is therefore considered 

as a positional benefit. 

Rook on an open file: Rook is the second powerful piece on the board after the queen. It can 

move far, so it always aims at having a lot of space to attack in order to catch opponent’s 

weaknesses and rush into enemy’s camp through this open file as soon as a player decides. 

Rook on a semi-open file: File is called semi-open one when there is no friendly pawn but 

there is an enemy pawn on it. Placed onto a semi-open file, rook does not allow opponent to 

leave his pawn unprotected, thus reducing mobility of his pieces. 
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Fig. 10: Positional factors. 

Knight’s mobility: Knight has at most 8 moves. The more moves it has at the moment, the 

better. 

(Supported) knight/bishop outpost: Both can highly reduce enemy’s mobility, especially if 

achieved in the openings. 

Bishop pair: With this only difference it is usually considered for a side (whichever has) to 

be in a slightly advantageous position. Two bishops might become very powerful when 

aiming at enemy’s king position. 

Centre pawn (d4,d5,e4,e5): Usually, in the opening one of the most important aims of both 

sides is to control central squares, as they are the most valuable ones for the mobility, and 

these are the central pawns that can do it best. 

Doubled pawn: Good pawn structure is very important. Doubled pawns are usually 

considered as a weakness: the upper one blocks the lower and in many cases both are in need 

to be defended by a piece. 

Blocked d2,d3,e2,e3 pawn: It complicates co-operation of the pieces within the camp, and 

can therefore be blocked by opponent’s outposts. 
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Fig. 11: Positional factors. 

Backward pawn:  Backward pawn does not have a pawn on the neighbouring verticals, 

which is nearer to the first rank, and it cannot move forward due to one or more enemy pawns 

on the adjacent files. 

Rook(s) on the 7th line: Rook(s) on the 7th line usually considerably impede co-operation of 

enemy’s pieces during the late stages of the game. 

Connected rooks: When two rooks are on the same file or line without pawns or pieces 

between them. Connected rooks are very strong, as they support each other.  

Passed pawn: A pawn is passed when it is not hindered by a pawn and can never be captured 

by a pawn. This pawn is usually aimed at to be promoted, so that it is of special importance in 

end games. 

Rook-supported passed pawn:  It is a kind of a rule: if your pawn is on the way to 

promotion, try to support it with a rook (if rooks exist on a board, of course). The opponent 

has then to block this pawn by placing a piece in front of it whereas your pieces are still free 

to choose their location. 

Adjacent pawn and isolated pawn: Isolated pawn has no friendly pawns on the 

neighbouring files. Adjacent pawn is the opposite. It is always better when a pawn is 
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defended by another pawn; otherwise it requires more powerful pieces to take care of it, thus 

reducing their own mobility. 

 

Fig. 12: Positional factors. 

Bishop on the 1st line. Knight on the 1st line: Mobility of minor pieces is very important 

during the entire game process. And at the same time they should not disturb the connection 

of heavy pieces. 

Far pawn: If a friendly pawn is close to its promotion square, it becomes very dangerous. 

Opponent must permanently make some of his pieces try to hinder further moving of such a 

pawn. But the bonus is given only when the pawn is not in danger of being taken with the 

next opponent’s reply. 

There are also some other parameters I paid my attention to during the selection. However, 

they require much deeper position analysis, and were eventually rejected for some reasons, 

one of which is that before including these parameters, I should improve my own chess skills. 

But these parameters are discussed briefly here. 

Pawn structure analysis: This is the minimax search (see section 2.2.3) performed for 

pawns and kings only with all other pieces removed from the chess board. The number of 

moves is not big, and in principle there is a possibility to perform this search to the end. It can 
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be valuable only since ending stage happens. The main meaning is to define a position, to 

which to conduct the game path.  

Position closeness (openness): In [22] the position is defined as a closed position if more 

than 6 pawns occupy the 16 centre squares of the board. In [24] there is an exemplary 

analysis of such closeness as being an advantage of one of the sides. For the illustration the 

situation in Fig. 13 is considered.  

 
Fig. 13: White to move. Close (1. d5) or open (1. dxe5) the position? 

In this position with white to move the material balance is equal, but positional one is not at 

all. White stays much better: all its army is active, king is safe, and rooks are connected, 

whereas black has none of these. Therefore, white should try to open the position in order to 

reach the black king faster, which, besides, hinders the communication of his own army. 

Black, on the other hand, should aim at closing the position, to provide time for king to 

escape. So 1. d5 would be an enormous mistake, because by playing so, white’s biggest 

advantages would be negated. Thus the qualitative analysis of the closeness is not as trivial as 

just 6 pawns in the centre. It depends on many more other things. 

Pieces’ activity: This is also worth to consider, since in many chess programs every 

potentially possible move adds some very small positive value to the overall evaluation value 

of the current position. In my opinion, if this parameter were included, it would also require 

detailed analysis. Probably, something like dividing the pieces into different categories with 

differently directed moves available, each having its own value for being performed, and so 
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on. This demands excellent positional understanding. An interesting approach to consider 

pieces’ activity was proposed in [31]. The author introduces the notion of a chess chunk as a 

special distance measure, according to which some pieces are relative. The discussion is 

based on the human style of interpreting a chess position, so that understanding this style may 

let a machine make predictions about human players’ performance.  
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4 GENETIC ALGORITHMS 

4.1 Overview 

Genetic Algorithms (GAs) aim mainly at solving various optimisation problems by means of 

applying the principle of natural selection to the creation of the solution. Moreover, during 

GA’s work an internal function is applied to determine how good a particular solution is. If 

you nowadays made an effort and tried to search for and name the areas in which GAs proved 

to be a good solution tool, you would receive a large number of very different problems, from 

scheduling [13], query optimising [5] and optimal control problems [34] to neural network 

training [2], network design [37] and game playing [43, 49]. 

The advent of the concept of GA is the result of generalisation and imitation in artificial 

systems of such wildlife properties as natural selection, adaptability to environment’s 

changing conditions, inheritance of the vital properties by descendants; thus following the 

rule “survival of the fittest” of Darwin’s evolution theory [10]. In scientific literature, the idea 

of GA was first proposed by John Holland in 1975 [25]. In his work, Holland suggested a 

scheme, or a sketch, how genetic algorithm should look like. In 1989, David Goldberg 

described in details the Simple Genetic Algorithm [21], the first famous computer 

implementation (using programming language Pascal) of a genetic algorithm.  

At present, the appearance and the complication of a wherever implemented genetic 

algorithm is much more difficult and time taking than these of the very first ones. But the 

basic structure still remains the same. Let’s consider it in more detailed in the following. 

4.2 Terminology 

In nature, in biological systems, from where the concept of genetic algorithm has come to 

computer science, the main concept of genetics is the chromosome. A set of chromosomes of 

every living organism is called the genotype, and the organism itself is called the phenotype. 

The parts constituting a chromosome are referred to as genes, which are located on different 

loci. Each gene controls the inheritance of one or several alleles.  
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In artificial genetic systems a different terminology is accepted [21]. The comparison of the 

corresponding terms and also the terms, which seem to be the most convenient for the current 

thesis, are given in Table 4.  

Table 4: Comparison of genetic terminology. 

Natural genetics Genetic algorithm Current thesis 

phenotype parameter set, alternative solution, 
decoded structure 

set of parameters 

genotype structure, population population 

chromosome string individual, representative, player 

gene feature, character, detector parameter 

locus string position position 

allele feature value parameter’s value 

 

4.3 Population 

So, the basic notion of the GA considered in computer science is an entity called string. A 

string in turn consists of features or characters, each of which controls the inheritance of one 

or several values. Features are located at certain places of the string, which are called 

positions [21].  

Feature can be whatever makes sense for a problem to be solved. For example, in [33] the 

function maximisation problem was considered for a function of two variables and binary 

values were used to code the variables. In [7] author considered the chess-playing computer 

program problem and decided a feature, indicating the importance of a parameter involved 

into the solution, to be represented by a fixed- length set of binary values. In [9, 26] an integer 

number stood for a feature of the N-Queens problem’s string, and in [13] a string for the job 

shop scheduling problem was constructed having some special structure as a feature. In each 

of these articles a different problem was dealt with, but all used the concept of GA as a 

solution tool.  

When applying GA, the string is the only information storage for the problem, i.e. it entirely 

describes a potential solution. GA operates with population, a set of actually different strings 

each representing one solution. Numerous strings are considered and evaluated as the 

algorithm goes on (the evolution process happens), always obtaining new population from the 
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previous one. It happens by means of applying genetic operators with the following 

evaluation, thus providing vast information exchange and modifications of the characteristics. 

This is why it is worth much fixing carefully and thinking over the most valuable attributes of 

the problem before creating a string. And this is why the key aspect of the algorithm is the 

representation of the solution, i.e. inventing the problem-specific internal structure of the 

string that does find the best solutions.  

4.4 Genetic operators 

According to GA’s principles, every individual in the population undergoes some 

modifications as the algorithm goes on, producing the offspring. There are two classical 

genetic operators, crossover and mutation, which perform these modifications. Usually, 

crossover takes two strings from the current population, selects a position, sets the crossover 

point, and makes an interchange of parts, separated by the chosen position, between two 

strings, thus forming two new ones. Single mutation usually changes the feature value of one 

position in one string. The way these operators do the selection usually utilizes problem 

specification and, hence, is of a special discussion. 

To understand the idea better, let’s consider its visual representation. Assume x1 and x2 are 

two strings of length 8 selected arbitrary from the population of candidate solutions for some 

problem and every feature occupies one bit in a string. Assume also that the third bit was 

selected as the crossover point. Then the operator performs as shown in Fig. 14. 

 

Fig. 14: Example of a simple crossover. 

Next, assume that one of two new strings, y1, is selected for the mutation, and the first bit is 

to be switched on this step of the algorithm. This mutation is shown in Fig. 15.  



 
 
 
 

38 

 
Fig. 15: Example of a simple mutation. 

There exist more complicated extensions of genetic operators: two-point (multi-point) 

crossover and two-point (multi-point) mutation. In two-point crossover, a string is divided 

into three parts, and the middle ones are exchanged. In two-point mutation, values of two 

positions are changed. A similar procedure can be defined for multi-point operators [33]. 

In spite of the fact that usually only two genetic operators are used, inversion is sometimes 

called the third genetic operator. Simple inversion selects two points along the length of the 

string, which is cut  at these points, and the sub-string between these points is reversed [33]. It 

is still an issue of great discussion if this operator is necessary, since evolution can happen 

without it [11]. However, inversion has been applied successfully in many differently 

purposed applications, and a reader is referred to [1, 37, 44] for the examples.  

4.5 Evaluation and selection 

Before the crossover and the mutation can be applied, all the strings are evaluated and the 

selection is conducted to make up a set for undergoing the genetic operators. This operation 

can be very different. There is a possibility to give preference to better solutions, or to make 

the worst individual be denied from the selection process, or use some randomised heuristics 

(roulette wheel selection), in which better solutions have higher selection probability. If the 

best individual is always preserved for the next generation, then it is called elitist model. 

There are also static and dynamic selection methods, with the constant and the varying 

selection probabilities of the representatives over the generations, respectively [33]. Finally, 

one is able to develop an own selection method private to the problem. But the most 

important part of each step of GA is its evaluation process. Every solution is assigned a 

fitness value, which characterises how good the solution is. Different solutions are achieved 

from the present ones, and it cannot be known in advance if these new candidates are better 

or worse than their parents. And this is the fitness function that decides it. Obviously, fitness 

function calculates fitness value of a string depending on the data this string contains. That is 

why it is very important for a string to carry the most valuable characteristics of the current 

problem in order to converge to a better solution, indeed.  
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5 PROPOSED GENETIC SYSTEM 

After all the parameters were selected, described and assigned the ranges to vary, the time has 

come to start dealing with GAs, and the first task is to develop an optimal representation of 

the future solutions. Here, we will start using, as appropriate, the terminology of the current 

thesis given earlier in Table 4. 

5.1 Solution representation 

The main problem when thinking over the issue is should an individual have integer, binary, 

or any other possible representation. As we have mentioned before, this very important 

choice depends highly on the problem specification.  

The simplest and the straightforward way is to operate with a usual binary string representing 

every parameter from Table 3 as a sub-string at a certain position. For example, a possible 

parameter containing a bonus value for a pawn in the centre might look like the one shown in 

Fig. 16.  

 
Fig. 16: Binary representation of “centre pawn” value. 

Here, the first bit is a sign bit and the rest is a value between 0 and 15, which, when added to 

15, gives the corresponding bonus value for an individual. Every other parameter can be 

coded in similar manner with some additions to several, thus constituting a binary string of 

the approximate length of 150 bits. This representation is close to the one used in [7]. The 

genetic operators are then the ones illustrated in Fig. 14 and Fig. 15, with a note that multi-

point crossover might perform better for such a long string. 

The idea of the second approach is to represent each parameter directly as an integer number 

within the corresponding range, according to Table 3. For instance, queen gets a value 

between 800 and 1000, rook between 440 and 540 and so on. In this case an individual would 

have a set of integers and would be much shorter than the one of binary structure. Surely, it 

seems more illustrative with respect to the problem because the parameters have the property 

of atomicity, but then the genetic operators are not clear and should be weighed somehow. 
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Applying similar crossover would always change a subset of parameters whereas in binary 

case a parameter could get a part from one parent and the rest from another if at least one 

crossover point was in the middle of the corresponding gene, which might provide better 

solution diversity than changing the whole parameter. As for mutation then it is not 

understood well how this operator should change the value of the parameter. For example, it 

could generate some random number within the range, or it could be a function depending on 

the current value, the range and the importance of the parameter, or any other specific 

technique. 

All said above results in the dilemma of choice: should an individual have binary and long 

structure, but with the genetic operators already developed, or should it be short and contain 

integer numbers, but with vague genetic operators, which are to be developed? Or in brief: 

which approach should show better results? 

Therefore a number of articles on the relative topics have been studied for the purpose of 

examining the representations used and the results achieved, which were analysed and 

compared to the present problem before making the final conclusion.  

In many researches on various parameter optimisation problems much attention has been 

paid to the solution process and the results, but the way the problem origins are dealt with has 

been omitted so that the work acts well with the representation involved. For instance, in [45] 

there is a big discussion about the time required to perform the evolution process using binary 

chromosomes. The chromosomes are simply involved, but no other possibility is considered. 

In [28] an integer representation is chosen, but also without reasons, just as a fact. In [7] the 

author selects a binary representation due to its prevalence throughout scientific literature and 

good understanding of the corresponding genetic operators. However, some other 

possibilities are mentioned in this work, but they stand apart of binary. The punch line of the 

examples I have given does not purpose to cavil or make any critics, but on the contrary, to 

note that in each of these papers good and valuable results were achieved in spite of the 

representation; so that it still stood unclear which of two was better. 

Finally, a comparison of two approaches, binary and floating point, applied on the same 

problem, was found in [33]. The following dynamic control problem was considered: 
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Here, x0 is a given initial state, Rxk ∈  is a state, and NRu ∈  is the sought control vector. 

Its optimal value can be expressed as 

2
00* xKJ = , 

where kK is the solution of the Riccati equation: 
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A string represented a vector of the control states u, x0 = 100 and N = 45. In his work, the 

author describes in details how the differences are handled, what is done for each approach at 

every phase and gives the reasons why the floating-point representation achieves better 

results. The final conclusion was that the floating-point representation appeared to be faster, 

more consistent from run to run, and more precise. Applying some special operators 

improved its performance in terms of achieved accuracy. Also it was stated that the floating-

point representation was easier for designing the problem specific operators. 

This experiment appeared to be even more useful, since the parameter optimisation problem 

was considered, to which the problem of the present research belongs. 

5.2 Individual 

So it was agreed to use integer representation of an individual, or a chess player. An 

individual has 26 parameters, according to Table 3. Each parameter keeps one integer number 

that corresponds to the value this parameter takes on. The parameters must be located in some 

order. And an interesting problem arises from this: is the order of parameters important?  

There are two basic possibilities that come to mind: when parameters appear in no special 

order, for example, as listed in Table 3, and when some combinations of parameters are 

placed together. 

The idea is that if the answer to the question above is positive and the parameters, which are 

truly correlated, appeared to stay one after another, then such an individual may show better 

performance than that of the separately placed parameters (of course, assuming that there are 

no other correlated groups). For example, passed pawn and adjacent pawn (the same pawn) 
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when placed one by one might produce the maximal bonus value greater than  40+5=45; or 

connected rooks together with rooks on the 7th line might achieve more than 20+30+30=80. 

And if the answer is negative, the result does not depend on the order and, hence, must be 

exactly the same.  

5.3 Operators 

Genetic operators are not necessarily both present in every GA. For example, in [28] there is 

no crossover, in [17] there is no mutation, and in [9] the same operation is used for both. This 

circumstance greatly depends on the solution technique the problem is managed by. For the 

present research, it was decided to involve both crossover and mutation, and since an integer 

representation was used, the specific operators had to be defined for both.  

We discussed already in section 4.4 basic principles of usual genetic operators, and in this 

chapter we will only discuss the problems, which were forced during the development stage. 

The operators selected for the use are presented at the end of every discussion. 

5.3.1 Crossover 

The development of the operator consisted of two parts. First, to fix how many crossover 

points it should have, and second, to create a rule, according to which the new individuals 

will be obtained.  

Since the number of parameters is small, one-point crossover and two-point crossover are of 

the most interest, of which the second seems to be more preferable. Of course, it cannot be 

known in advance, which variant appears to be better, and a similar but simpler reason for 

such a favour was already given in section 5.2. Namely, it can happen that some parameters 

will not be in harmony with the others, thus making ind ividual show worse results. And when 

replaced with some other set, they will, hopefully, improve. This idea can seem close to the 

one of correlated parameters, but, actually, it slightly differs, since it is quite difficult, or ever 

feasible, to discover a correlation between some 5 parameters. However, it can be considered 

and studied as a generalisation.  

So two-point crossover was agreed. The crossover points will be chosen randomly for every 

new generation, perhaps, providing more population diversity. 
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Next, there is a lot of possibilities for obtaining new values of the parameters. The very well 

known one was already explained earlier: it is a simple exchange (see Fig. 14). A middle part 

is interchanged in two-point crossover. According to the author’s opinion, the drawback of 

this simple exchange under quite small population size is that there is higher probability for 

two offspring to be selected as a pair for the crossover one iteration after. It will result in 

producing their parents and will be useless in terms of information exchange. Another 

possibility is to apply some mathematical formulae, which can make sense. For example, the 

resulting value can be one of the following: 
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These expressions take two numbers and produce one. Since two generally different values 

must appear for a parameter after the crossover (so as to produce two different offspring), the 

idea of arithmetic crossover [33] was involved. This type of crossover is expressed by the 

formulas: 
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where x1 and x2 are the parameters on the same position of the first and the second individual, 

respectively, y1 and y2 are the resulting values for offspring, and [ ]1..0∈a  is some coefficient. 

Using (2), it is easy to generalise (1): 
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In general, coefficient a can be globally fixed before the algorithm starts, randomly generated 

for every next step of the algorithm, or can be new for every pair. Like that of selecting the 
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crossover type, it is impossible to know which combination performs best. Therefore it was 

decided to obtain new chromosomes as shown in Fig. 17. 

:1y  ( ) 21 1 xaxa ⋅−+⋅  ( ) 211 xaxa ⋅+⋅−  ( ) 21 1 xaxa ⋅−+⋅  
 

:2y  ( ) 211 xaxa ⋅+⋅−  ( ) 21 1 xaxa ⋅−+⋅  ( ) 211 xaxa ⋅+⋅−  

Fig. 17: Selected crossover. 

Since a is a floating-point number, the resulting values must be rounded to an integer. The 

result is rounded up (to the nearest integer) if its fractional part is greater than or equal to 0.5, 

and is rounded down (to the nearest integer) otherwise.  

To illustrate how this crossover works, let’s consider two individuals shown in Table 5. 

Coefficient a = 0.783197 and crossover points are (after) 8 and (before) 13. They are marked 

out by the double lines. Values of the parameters of the first offspring are calculated using the 

upper rule of Fig. 17, and values of the parameters of the second offspring are calculated 

according to the lower rule. 

Let’s perform calculations for the value of the first parameter (the queen) for both. For the 

first offspring we have 0.783197 ⋅ 861 + (1 - 0.783197) ⋅ 888 = 866.853681, and this number 

is rounded up (0.853681 > 0.5) so that p1 = 867. For the second offspring we have (1-

0.783197) ⋅ 861 + 0.783197⋅ 888 = 882.146319, and this number is rounded down (0.146319 

< 0.5) so that p1 = 882. 

The selected crossover has the averaging effect, i.e. it produces the values from the range 

between the minimum and the maximum of the corresponding values of parents. 

Table 5: Example of individuals (two top rows) and their offspring (two bottom rows). 

861 468 310 292 112 4 34 38 1 28 15 23 27 10 17 1 31 24 26 16 15 14 8 0 26 6 
                          

888  527 366 299 92 27 2 3 7 29 5 22 27 18 12 3 24 31 8 17 5 11 13 2 10 8 
                          

867 481 322 294 108 9 27 30 6 29 7 22 27 12 16 1 29 26 22 16 13 13 9 0 23 6 
                          

882 514 354 297 96 22 9 11 2 28 13 23 27 16 13 3 26 29 12 17 7 12 12 2 13 8 

 

The probability of crossover pc is one more component of the crossover operator. It decides if 

an individual undergoes crossover or not. There are no universal instructions for setting the 

probability, because this issue highly depends on the problem. The value of pc for the current 
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genetic system is discussed later in the experimental part in section 6.1, since there must be 

some reasoning given. 

5.3.2 Mutation 

The idea of mutation is to provide some variance for the values of the parameters. Like in 

crossover, there are the key issues: 1) defining the rule, according to which the mutation 

happens, 2) fixing the probability of the mutation, i.e. how often the parameters should be 

mutated.  

Undoubtedly, the development of the proper mutation operator is a consequence of the 

analysis of the problem specification and the representation of the solution. And the 

conclusion may even be that of applying no mutation at all, like it happened in [17]. For the 

problem of this thesis one mutation operation affects one parameter’s value, and this change 

can happen differently. The simplest idea is to replace the current value with a randomly 

generated new one from the parameter’s range. This is of pure chance and is by no means 

connected with the parameter’s previous value.  

Quite often the natural method for the mutation is to swap two elements of the string. It is 

usually applied when all parameters are equivalent, thus, it is not applicable for the present 

genetic model. 

Another possibility of modifying the parameter is to use normal (Gaussian) distribution [14] 

as its basis. Up to a random number between 0 and 1 (vertical axe of Fig. 18), the 

corresponding number of the horizontal axe (positive or negative, up to a random binary 

number) is added to the current parameter value.  

One more way is to alter a parameter taking into account its current value. For example, the 

following formula was proposed in [33]: 
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where [ ]1..0∈r  is a random number, b is a parameter, t is the number of the current 

generation, and T is the overall number of generations. The sign (plus or minus) is chosen 

randomly. This change decreases with time, and the reason is to vary the value greatly and 
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search the entire space in the beginning, and make very minor alterations at larger stages, so 

that to increase the probability of generating a number close to its successor [33].  

 

Fig. 18: Normal density function. 

All the above possibilities of mutation seemed to serve well, and there were no good reasons 

found that could give privilege to any. Moreover, all parameters are integers and do not have 

large ranges to vary. It restricts the best possible accuracy to 1, and using, for example, (3) in 

this case seems quite unreasonable, because the change produced by this formulae in late 

generations will not have any effect. Finally, I chose a simple random mutation. 

The second fundamental issue of the mutation operator is its frequency, i.e. mutation rate pm. 

It is much likely that the most appropriate frequency is obtained always empirically. There 

are, however, some commonly used variants: for large population sizes the probability of 

around 0.001 is chosen, and for sma ll population sizes, when the diversity within one 

population is much smaller, this number can increase up to 0.1 [33].  

The mutation rate pm of the present work is also discussed in the experimental part in section 

6.1, together with the probability of crossover pc. 
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5.4 Evaluation and selection 

As it was already mentioned earlier, the most important part of every GA is its fitness 

function. While preparing this thesis, I have studied some works on the same topic, i.e. 

applying GAs for the evaluation in chess [7, 28, 45].  

In both [7] and [45] the idea is that every individual is given a certain number of positions 

from the famous games played by grandmasters. The player has to find the best move in these 

positions using its own evaluation function. Assuming that the grandmasters’ moves are 

perfect in the overwhelming majority of the positions, fitness of the individual is then 

calculated by means of the number of matches between the grandmasters’ moves and the 

ones made by individual and then divided by the total number of positions it was given to 

analyse.  

In my opinion, such an approach has some disadvantages. First of all, there is still a big 

discussion about computer’s playing in the middle stage of the game. For example, it is well 

known to a highly experienced human chess-player that in some positions there exists the so-

called positional pawn sacrifice. If accepted, it allows the sacrifying side to possess an 

initiative and thus create some enduring pressure on the opponent’s pieces with the sound 

hope that it will finally lead to a deciding advantage in the game. Humans are applying this 

technique successfully. But as for a computer, it cannot play in such way. The main thing for 

a computer is the position scoring, and if it is unable to find whichever alternative for that 

pawn, it will never play so.  

To prove the opinion, there is a game, Deep Blue vs. G. Kasparov, California, USA, 1996 

[48, 51], where Deep Blue left a central pawn en prise. And only as that game continued, it 

became clear that the machine simply calculated the return of the material, which was not 

obvious.  

Next, every grandmaster thinks differently in a large number of complicated positions 

(otherwise there will be no resulting games). Therefore it can not be excluded that a computer 

plays other move than the grandmaster, whose game is being analysed, played, which means 

that making “wrong” move computer does not get a point. This is actually somewhat unfair. 

There is, undoubtedly, another grandmaster, which would make the same move as the 

computer did. Moreover, his move would lead to the exactly same result. But if the latter 
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grandmaster’s game was considered (even assuming different position) instead, the computer 

would much more likely get a point for the evaluation of the given position.  

As one more curious situation relative to the move selection, let’s consider the position 

depicted in Fig. 19 and discussed in [15]. In this position, there is a clear and obvious win for 

white that even a novice player can recognise in a moment. The white pawn on a2 is closer 

(in moves) to its promotion square a8 than the black king and its advance cannot be hindered. 

Therefore the only correct move for white in this position is 1. a4. 

But a static analysis of this position results in a doubtless advantage for black, since black has 

three pawns and white has only two. And if the machine took on white and were offered a 

draw, it would readily accept even though this would be utter folly.  

The chess engine used in [15] after 3-ply search played 1. b4 f5 2. a4 with the negative score 

for white. The comment given in the book says that the machine obviously “misunderstands” 

the position. After 5-ply search, it concluded with 1. b4 f5 2. a4 g5 3. Kf2 and negative score, 

still being blind to the promotion. After 7-ply search, it played 1. b4 f5 2. a4 g5 3. Kf2 h5 4. 

Kg3 and negative score. And only after 9-ply search, the move line was correct 1. a4 h5 2. a5 

h4 3. a6 h3 4. a7 h2+ 5. Kxh2, and the score finally became positive. The comments for this 

choice say that the reason why white play 1. a4 is that they win a pawn, but not because of 

the promotion! 

 
Fig. 19: White to move and win. 
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I repeated the above procedure using my own program, and qualitatively the result proved to 

be absolutely the same, i.e. the machine finally achieved positive score only after 9-ply 

search. The main conclusion of this small but priceless try is that the computer picks the right 

move for the wrong reason, and it needs a 11-ply search to understand that 1. a4 leads to the 

promotion and not the pawn capture. 

So, you see how it goes with the computer. Of course, the situation above is very simple and 

nowadays will never happen to a high- level chess-playing computer. But the number of chess 

positions is enormous, the search is not limited to 11 plies, and the main feature I concluded 

is that encouragement given for making the right move, but using the wrong reason, is not the 

best way to train a computer to play chess, or even to train at all. Nevertheless, the technique 

of move matching can be surely successfully applied, and works [7, 8] are an excellent proof, 

but it seems to be too subjective and makes a computer depend greatly on how humans play, 

whereas the latter is too far away from being understood. 

Another approach, proposed in [28], organises a match of two games, one with white and one 

with black, between two individuals from the population. The winner is selected for the next 

generation and the loser is replaced with the winner’s mutated clone. The method seems to be 

more suitable for the computers if for no other reason than its independence from human 

chess. 

Each-with-each tournament system, also called Round Robin [38, 54], can be considered as 

an extension of the above method. With time the practice proved that it achieves the most 

truthful results wherever used, not only in chess. In such a tournament every participant plays 

against every other, and one mistake made here still most likely leads to the actual final 

standings whereas it might not and even often does not in other systems such as Swiss system 

invented by J. Muller in 1895 [38, 54], or Knock-out system (in which the loser is eliminated 

from the tournament). The only essential drawback of Round Robin is that it is very time 

taking and hence often simply not acceptable in real- life tournaments. Nevertheless, I chose 

Round Robin for my experiments. 

Number of participants of the tournament is discussed later in section 6.1. There are also 

some estimation numbers presented. One player will always have a set of predefined values, 

will never take part in the genetic process and will be moved to the next generation 

independently of the results it achieved in the tournament. This individual, called here the 
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reference player, is involved into the population in purpose. Its values for the pieces given in 

the right column of Table 3 are close to the values, which proved to show better performance 

in various previous works. As for the other parameters, I could not find any sufficient 

information on their exact values, and therefore each was assigned middle value of the 

corresponding range. The number of points (win is one point, and draw is half a point) an 

individual obtains in a single tournament stands for its fitness measure, and fitness value fi of 

the i-th individual is then his score divided by the maximal possible number of  2·(N-1) 

points, where N is the population size. 

The selection is done by means of roulette wheel, in which an individual is chosen for 

breeding according to the scheme given in [33]. It is described as a C- like program in Fig. 20. 
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population  RouleteWheelSelection(population POP) 
{ 
 int N = GetPopulationSize(POP); 

float f[N-1],p[N-1],q[N-1]; 
 float r; 

int F; 
int i,j; 
 
//Assign a fitness value f[i] to each individual of POP 
for i=1 to N-1 
 f[i] = (POP[i].points)/MAX_POINTS; 

  
//Calculate the total fitness of the population as the sum 
//of all fitness values 
F = 0; 
for i=1 to N-1 
 F = F + f[i]; 
 
//Calculate selection probability for each individual 
for i=1 to N-1 
 p[i] = f[i]/F; 
 
//Calculate the cumulative probability q[i] for each  
//individual 
for i=1 to N-1 
 for j=1 to i 
       q[i] = q[i] + p[j]; 
 
//Start roulette wheel 
for i = 1 to N-1 
{ 
 //Generate random number r from the range [0..1] 
 r = random(0..1); 
  
 //Select the first individual if r < q[1], 
 //the j-th one if q[j-1] < r <= q[j] 
 j = 1; 
 while (r > q[j]) 
  j++;  
 
 NEW_POP[i] = POP[j]; 
} 
 
return NEW_POP;   

}  

Fig. 20: Roulette wheel selection. 
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6 EXPERIMENTS AND RESULTS 

6.1 Some preliminary calculations 

In my experiments, due to the speciality of the goals of this research, I have not set any time 

limits for a game so that every game was played to the end. Therefore a factor of time was the 

main obstacle that I came across with before starting the evolution process. To solve out the 

situation, a number of test games were played. Searching to 3 plies, one game took on 

average three minutes to complete, whereas searching to 4 plies, one game lasted more than 

thirty minutes. For the latter case, assuming that the evolution process would have, for 

example, 40 generations, and each Round Robin tournament would have 20 games for only 5 

participants (if there are N players in the tournament and each pair plays twice, then N·(N-1) 

games must be played), the lower bound for the entire evolution process appears to be around 

20⋅ 40⋅ 30 = 24000 minutes, or 400 hours of work for one computer. And if we assume also 

that population size must be increased in order to provide better diversity, then this number 

becomes unacceptable, indeed. Using 3-ply search depth, the entire evolution process appears 

to be already around 20⋅ 40⋅ 3 = 2400 minutes, or 40 hours of work for 5 players, and around 

90⋅ 40⋅ 3 = 10800 minutes, or 180 hours of work for 10 players. Taking into account that 

some time should also be spent to process all the results and create the next generation, 3-ply 

search seemed to be the most suitable.  

Thus, we have 3-ply search, 10 individuals (including the reference player) and 40 

generations to complete the evolution process. And now, as there are all numbers fixed, the 

probabilities of crossover pc and mutation pm must be specified. For example, in [33] the 

probabilities of pc = 0.25 and pm = 0.01 were set for the population size of 20 individuals, 

each having 33 binary parameters. My population is two times less, but each individual has 

26 parameters, and these parameters are integers instead of binaries, so that they have more 

values to take. I selected pc = 0.5 and pm = 0.01. 

6.2 General playing style and its problems 

The only possibility to win a chess game is to checkmate an opponent’s king. In several types 

of positions, like “king against king and queen”, “king against king and rook”, “king against 
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king and two bishops”, “king against king, bishop and knight” there is an algorithm that tells 

how to checkmate. None of them was implemented in the current program. Instead, for the 

simplicity, each game was played unless one of the players achieved the best score below 

some threshold of hopelessness two times in a row. In this case the program immediately 

resigned and the game ended. Of course, it does not mean that there could no checkmate 

happen: there were the positions, from which no escape was possible and king was eventually 

checkmated. The threshold was set so that, according to the range of the parameters, the 

mentioned positions were supposed to satisfy that condition.  

However, when the experiment had already begun and a number of generations were already 

performed, it turned out that there were the positions from the list above, in which a losing 

side didn’t resign as it should have had to. It happened because of no other reason than the 

score it achieved was above the threshold due to one or the other factor that was trifling from 

the quantitative point of view, but that appeared to have a tremendous qualitative effect. For 

example, white castled its king in the beginning and black did not. It means that white always 

gets a bonus value for castling, whereas black gets a punishment for missing its castling 

opportunity. And the game continued so that eventually black has king and rook, whereas 

white has only king left. The evaluation function in this case still punishes black and gives a 

bonus to white. Therefore, depending on the value of the rook, white may get the score, 

which is above the threshold, so that it continues playing. And the game becomes drawn, 

because black does not know how to checkmate. The evident solution could have been to 

decrease the threshold, and it would certainly have solved that problem. But that 

circumstance was found out quite late after the  beginning and it would have meant to break 

the already running evolution process and to start a new one, but that was not possible 

because of the time limits. Therefore, it was taken as a matter of fact, taking into account a 

considerable sparsity of such positions. 

Draw could only happen in three cases: 1) there was a stalemate, 2) the same position 

appeared three times, 3) there were 50 moves played, during which no change of material 

balance happened and no pawn move was made. The last two are the official rules adopted by 

World Chess Federation (FIDE).  

A draw of the second case can also mislead the natural continuation of the game. Assume, 

there is a complicated position in the middle game, in which one side has a “piece-for-a-

pawn” advantage. In general, this side must win the game. But it behaves so that the best 
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moves it selects do not use the advantage, e.g. it places a knight from one square to another 

and back. This leads to three-times repetition of the same position. As a result there is a 

drawn game, what is actually not the expected result. In this case a program must not make 

the best move in order to use the advantage it has, but this is not a trivial circumstance to 

handle. And surely, there were the games observed during the experiment, in which the 

situation took place. 

All described cases had an effect on the final standings of the individuals in every 

tournament, which, in turn, had an indirect effect on the selection process and, hence, on the 

further evolution process. 

Since there was no opening database used, most of the games of the late tournaments were 

mainly of a few game paths up to some moment. Later on, the program became able to find 

several best moves and had a choice of the possible continuations, thus providing a natural 

diversity. This fact has the same meaning as the database of openings has, i.e. storing the best 

known move for each position, but only much smaller in its size and according to a particular 

evaluation function. 

Many games ended with the different score than they were expected to. It happened because 

of the three factors. The factor of incorrect draws (instead of wins) was already discussed 

above. The second possibility deals with the set of the evaluation parameters and will be paid 

a special attention to. The third factor, the one of the search depth, we will now discuss. 

As it was already said, the deepest acceptable depth search was 3 plies. Obviously, it greatly 

reduces the quality of playing. The modern chess computers search for 10 and more plies. 

Moreover, they are usually limited in time. It becomes possible, because the authors of those 

programs have implemented most of the techniques discussed in section 2.2 of this thesis and 

may have also added some additional, very specific and complicated improvements to their 

algorithms. Surely, they must have spent a considerable amount of time making everything 

work correctly, since, in my opinion, some issues require a great number of tests run in order 

to be sure that the feature is functioning perfectly. In addition, they already have an 

evaluation function developed.  

It appeared during the running of the experiment that a quiescence search must play the 

decisive role for a computer chess program, and it is, in fact, closely interconnected with the 

depth of the search. I realised that a side on move always tries to make qualitatively the same 
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move in reply. For example, it attempts to attack an opponent’s piece if an own piece just was 

attacked, and such a style of playing can last while the program is able to do so. It also gives 

a check almost whenever possible, since this type of move very often does not change 

material balance. These two factors, when coupled, can cause the game to end in just a few 

moves after the piece exchange starts. Simply because of the possibility for one side to check 

an opponent’s king by means of moving a piece that was under attack. And after the check, to 

take opponent’s piece, which is still being attacked. 

The other possible mistake sets out as a part of the previous one but it concludes more in 

insufficiently deep search than in the explosiveness of the position. To clear up, there were 

the positions, in which a queen (a rook) was trapped in three and more moves. Here, the trick 

was that up to some moment a piece was placed to a safe square every time, but finally, after 

a sequence of such “safe” escapes, the best move was to sacrifice that piece for a less 

valuable one. To prevent this, it is necessary to search deeper. 

6.3 The results 

The results of each generation were processed manually. Game results were stored in separate 

cross tables. An exemplar cross table (for the 23rd generation) is given in Table 6. 

Table 6: Tournament cross-table. 

ROUND 23          points place 
 1 2 3 4 5 6 7 8 9 const   

1 + 0 0 0 0 0 1 1 0.5 0 0.5 0 0 0 1 0 0.5 1 0.5 6 ix 

2 1 1 + 1 1 1 0 0.5 1 0.5 1 0 1 0 0 0 1 1 1 12 ii 

3 1 1 0 0 + 0 1 1 0.5 1 0 1 1 1 1 1 0.5 1 0.5 12.5 i 

4 0 1 1 0 0 1 + 0 1 0 0 0 0.5 0 0.5 0 0.5 0 0 5.5 x 

5 0.5 0 0 0.5 0.5 0 0 1 + 1 1 1 0 1 0.5 0 0 1 1 9 v-vi 

6 0.5 1 0 0.5 1 0 1 1 0 0 + 1 1 0 0.5 0.5 1 1 0 10 iii-iv 

7 1 1 0 1 0 0 0.5 1 1 0 0 0 + 0 0 0 1 1 1 8.5 vii 

8 0 1 1 1 0 0 0.5 1 0.5 0 0.5 1 1 1 + 0 1 0 0.5 10 iii-iv 

9 0.5 1 0 1 0.5 0 0.5 1 1 1 0 0.5 0 1 0 1 + 0 0 9 v-vi 

const 0.5 0 0 0 0.5 0 1 1 0 0 1 0 0 0 0.5 1 1 1 + 7.5 viii 

 

As it was already said above, fitness of each individual is its score divided by the maximal 

number of points (18). Those numbers were given as an input for an independent program 
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that was used to create the next generation. The output of the program was then copied into 

the files of evaluation functions, which individuals used every time a new game started. 

The initial set of parameters for every individual was generated randomly by means of 

assigning every parameter a value within its range of alteration (see Table 3). These sets are 

presented in Appendix A. The reference player (referred to as const) stood unmodified and 

took part in tournaments of all generations regardless of the score it achieved in the previous 

one. In Fig. 21 the places, with which this player scored in every generation, are depicted. 
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Fig. 21: Performance of the reference player in the evolution process. 

The plot has both successful values (i.e. victories in tournaments of generations 13, 20, 24, 

26, 33, 36, 37), unsuccessful values (i.e. losses in tournaments of generations 1, 10, 11) and 

neutral values (i.e. standing in the middle of the cross table) throughout the entire evaluation 

process. It means that the reference player showed quite unsteady performance.  

An interesting moment was noticed in the fifth generation. A fragment of its cross table is 

shown in Table 7. Here, players 5, 6 and 7 have an identical set of parameters of their 

evaluation functions given in Table 8. 

Table 7: Performance of individuals 5, 6, 7 in the tournament of the fifth generation. 

5 0 0 0 1 0 0 0.5 0 + 0 0 0 1 0.5 0.5 0.5 0 0 0.5 4.5 x 

6 0.5 0.5 1 1 1 0 0 0 1 1 + 1 1 0.5 0 1 1 1 0.5 12 i 

7 0 0 0 0.5 0.5 1 0.5 1 0 1 0 0 + 0 1 1 1 1 0 8.5 vii 
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Table 8: Parameters of the evaluation function of individuals 5, 6, 7 of the fifth generation. 

816 490 316 301 105 25 33 23 1 16 4 20 8 3 23 4 30 29 5 23 13 6 6 14 29 9 

 

However, their standings vary greatly. This fact was detected already when working on the 

results of the experiment and was taken as a considerable argument in making the 

conclusions. It somewhat explains the unstable behaviour of the reference player, and I 

suppose, it appeared to be mostly the result of a weak search procedure, independently of the 

values of the evaluation function parameters. 

After the evaluation process had finished, every parameter converged to some value. The last 

(40th) generation is presented in Appendix B. There, the value of the second parameter of 

individual 6 differs from the ones of every other because of the mutation. Otherwise, the 

difference between the corresponding values of the rest of the parameters is small enough to 

state the fact of convergence. Moreover, in cases of parameters 4, 5, 12, 14, 15, 17, 18 and 24 

the difference is absent at all.  
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Fig. 22: Development of the average value of bishop and knight. 

 Now, let’s discuss in details the set of the evaluation parameters, which were selected for the 

current chess program, in terms of the values they converged to. Predictably, the first five 

parameters standing for the exchangeable pieces eventually got the values they were 

qualitatively expected to have. The similar situation proved to be for the punishment given 

for having a bishop or a knight on the first line. Obviously, for bishop it is not so bad, since it 

is able, in general, to reach the other side of the board in one move while knight must make at 
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least three moves. And you can see from the final values of the parameters (see Appendix B) 

that they are worth one third and three four th of their maximal values (see Table 3), 

respectively. 

Fig. 22 shows the evolution of the population average value of bishop and knight. The plots 

become smooth already since the second half of the evolution process begins. It means that 

they have converged to the final values quite soon. Fig. 23 shows the development of the best 

non-reference player’s values for knight and bishop through the evolution process. In the 

beginning the values varied a lot, and in later generations the roughness is rarer and it arises 

only when the reference player appeared to win the tournament.  
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Fig. 23: Development of the best values of bishop and knight of non-reference players. 

As for the others then the answer is not so trivial. First of all, it appeared that every other 

parameter is of very different importance in different situations in the game. You were 

already given one example on this issue: castling parameters had an influence in the very end 

of the game whereas they had not to. A pawn in the centre is a desirable position achievement 

in the beginning when one needs more space to mobilise his forces faster. Later on, when the 

main action often happens on the flank, such a pawn should be paid less attention. On the 

contrary, a rook on an open file and a rook on the 7th line are much more important during the 

later game period as well as far pawn is more indefensible and less useful when there are still 

a lot of pieces on the board. 
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All the above and some other facts were in a varying degree being observed when watching 

how programs were playing against each other in the tournaments. And the main conclusion 

is that regardless of the depth of the search, there are two possibilities to make evaluation 

function perform better. 

The first one is to use the universal set of criterion, every member of which has 

approximately the same importance through the whole game duration. In this case, a possible 

evaluation function seems to be not very complicated and this is the efficient search 

algorithm that may make a program play better. 

The second variant is to divide a chess game into stages and use a separate, perhaps, very 

different set of parameters during each stage. This question looks quite knotty, for the 

division cannot be done at once. Moreover, the stage bounds are very particular in every 

game. It is impossible, in general, to say at some arbitrary position if one stage of the game 

has gone and the next has already come. And it is not so trivial to invent/develop such 

criterions. One possible idea of determining a stage of the game might be to consider the 

overall weight of the army by summing up pieces’ values only. A linear function, reducing 

with every piece moved away from the game board might serve as an indicator. And within 

some range it can be considered to be either the leaving or the coming stage. But certainly, 

the parameters like castling must not have an influence on the game flow in endings. In my 

opinion, this variant of improving the evaluation function seems to be more promising, as it 

tries to utilise the individuality of a chess position. 

As a final testing, two matches of 20 games each were organised. The first one was played by 

the best individual of the last generation and an individual with a random set of parameter 

values (the values of individual 6 of the first generation were taken). The match was won by 

the first player with the score 12-8, of those 4 games were drawn. The second match was 

between the best individual of the last generation and the individual, which only had the same 

values for the pieces in its evaluation function, so that every other parameter was set to 0. The 

match was one by the first player with the score 13-7, of those also 4 games were drawn.  

Thus, in both cases the developed player gained a victory. The advantage did not appear to be 

striking, but it indicates an improvement. 
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7 CONCLUSIONS 

The work has shown that genetic algorithms can be successfully applied for determining the 

fittest values for the parameters involved into the numerical evaluation of a chess position.  

Taking into consideration all the discussion of Chapter 6, the values obtained in the cur rent 

work can be considered as the optimal values for the selected parameters and the 

implementation developed. Being of the primary importance for a chess position, the 

parameters for the pieces have converged to more or less expected values, and they are likely 

to show successful performance when coupled with a more complicated search algorithm. I 

think, they should not either dramatically change the quality of playing when involved into 

another evaluation function. Other parameters all together might not be correct from the 

above point of view. The main reason is that their tuning could have been ruined and misled 

by a couple of “insufficient-search-based” piece sacrifices. It means that the optimality of 

such a subtle parameter as, for example, “adjacent pawn” must be based on the excellent 

search technique. Similarly, such values as bonus for making castling and punishment for its 

omission can be disputed. 

The current work has shown that the selected topic is of interest to be continued and 

amended. Therefore the future work should aim at improving the present results by means of 

expanding the search procedure and mastering the second approach of complicating the 

evaluation function. 
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APPENDICES 

Appendix A: Initial generation. 

   individual:            

   1 2 3 4 5 6 7 8 9 const 
parameter:   assigned values:         

 0  905 818 965 824 880 888 808 861 995 900 
 1  522 526 476 470 456 527 494 468 470 500 
 2  346 344 359 308 340 366 317 310 336 340 

 3  356 333 321 338 344 299 302 292 356 330 
 4  93 105 111 88 102 92 104 112 110 100 

 5  19 16 36 11 7 27 28 4 31 20 
 6  14 2 2 5 39 2 26 34 29 20 

 7  14 8 43 3 15 3 21 38 48 25 
 8  5 13 25 23 13 7 1 1 21 15 

 9  4 24 28 20 15 29 14 28 23 15 
 10  1 1 3 16 18 5 1 15 11 10 

 11  19 26 25 15 27 22 20 23 27 15 
 12  13 34 39 14 22 27 5 27 32 20 

 13  13 23 15 2 26 18 2 10 3 15 
 14  9 5 20 13 27 12 24 17 26 15 

 15  0 3 1 3 3 3 4 1 3 3 
 16  38 20 24 7 20 24 30 31 10 20 
 17  20 32 24 29 9 31 30 24 11 20 

 18  3 7 16 19 1 8 2 26 3 15 
 19  6 26 7 3 23 17 24 16 5 15 

 20  0 29 25 23 4 5 13 15 28 15 
 21  5 9 13 3 13 11 5 14 4 7 

 22  0 1 17 5 17 13 6 8 4 10 
 23  1 1 16 16 15 2 16 0 1 10 

 24  29 11 21 5 12 10 29 26 20 15 
 25  12 6 17 19 4 8 10 6 20 15 
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Appendix B: Last generation. 

   individual:         

   1 2 3 4 5 6 7 8 9 const 
parameter:  assigned values:         

 0  860 860 860 860 861 861 860 860 860 900 
 1  485 485 486 485 485 519 485 485 485 500 

 2  327 327 327 327 327 327 325 326 326 340 
 3  306 306 306 306 305 305 306 306 306 330 

 4  105 105 105 105 105 105 105 105 105 100 
 5  27 27 27 27 27 27 27 27 27 20 

 6  27 27 27 27 26 26 26 27 26 20 
 7  30 30 29 30 30 30 30 30 30 25 
 8  3 3 3 3 3 3 4 3 4 15 

 9  19 19 21 19 20 20 18 19 18 15 
 10  9 9 9 9 10 10 9 9 9 10 

 11  23 23 23 23 23 23 22 23 22 15 
 12  17 17 17 17 17 17 17 17 17 20 

 13  17 17 17 17 18 18 18 17 18 15 
 14  17 17 17 17 17 17 17 17 17 15 

 15  2 2 2 2 2 2 2 2 2 3 
 16  23 23 23 33 24 28 23 33 27 20 

 17  27 27 27 27 27 27 27 27 27 20 
 18  12 12 12 12 12 12 12 12 12 15 

 19  12 12 13 12 12 12 12 12 12 15 
 20  13 13 14 13 13 13 13 13 13 15 

 21  8 14 8 7 7 8 7 7 8 7 
 22  12 12 12 12 12 12 12 12 12 10 
 23  7 7 6 6 5 6 6 6 7 10 

 24  22 22 22 22 22 22 22 22 22 15 
 25  15 15 12 14 13 14 14 15 14 15 

 


